
CSC 8-Bit Cross-Assembler
by Edgar M. (Bud) Pass, Ph.D.

 1988-1996 by Computer Systems Consultants, Inc.

Copyright Notice

This manual and any accompanying materials described by this manual are copyrighted but have been
released for public use by Bud Pass.

Limited Warranty Statement

Computer Systems Consultants, Inc., and its agents, makes no express or implied warranties concerning the
applicability of the CSC Assembler to a particular purpose. Liability is limited to the original license cost.
This warranty is presented expressly in lieu of all other warranties, expressed or implied, including those of
merchantability and fitness for use and of all other obligations on the part of Computer Systems
Consultants, Inc. and its agents.

Problems and Improvements

Users are encouraged to submit problems and to suggest or to provide improvements for the CSC
Assembler. Such input will be processed on a best effort basis. Computer Systems Consultants reserves the
right to make program corrections or improvements on an individual or wholesale basis, as required. The
company is under no obligation to provide corrections or improvements to all users of the CSC Assembler.
In the case of specific situations requiring extensions to the CSC Assembler or major assistance in its use,
consulting is available on a pre-arranged, for-fee basis.

INTRODUCTION TO THE CSC ASSEMBLER

The CSC Assembler is a generic term used in this manual to denote assemblers for several different
microprocessors. These assemblers are all so similar that they are all described together, with pertinent
differences noted.

The CSC Assembler is written in the C language and thus may be transferred to a variety of systems with far
less effort than that required to transfer a program coded in a lower-level language. An description of the C
source language modules appears later in this manual.

In addition to the basic ability to recognize the target computer's assembly language and to process
symbolic address expressions, it has the ability to support structured assembly programming, the ability to
define conditional assembly directive expressions, and the ability to assemble programs stored in modular
form.

Since the RCA 1805 instruction set forms a superset of the 1802 instruction set, the CSC 1805 Assembler is
capable of assembling programs for both of these microprocessors.

1

Since the Motorola 6801 instruction set forms a superset of the 6800, 6802, and 6808 instruction sets, and is
identical to that of the 6803 instruction set, the CSC 6801 Assembler is also capable of assembling
programs written for all of those microprocessors.

The CSC 6801 Assembler is also capable of assembling programs for the Hitachi 6303, as it recognizes the
six extra instructions, and for the Motorola 68HC11, as it recognizes the extra instructions and addressing
modes. There is one minor inconsistency, in that the XGDX instruction has different opcodes on the 6303
and on the 68HC11. The CSC 6801 Assembler resolves this ambiguity by changing the name of the 6303
XGDX instruction to XDGXH; however, if an instruction recognized only by the 6303 is found, such as
AIM, EIM, OIM, etc., the XGDX instruction will be interpreted as a 6303 XGDX instruction (hex 18).

The CSC 6809 Assembler also recognizes 6800 and 6801 mnemonics, generating code for them to simulate
the register and memory changes caused by the instructions on the 6800 and 6801. The CSC 6801
Assembler recognizes operators coded in the form 'lda a' or in the form 'ldaa', but the CSC 6809 assembler
requires 6800 and 6801 simulated mnemonics to be coded in the latter form.

The CSC 6805 Assembler is also capable of assembling programs written for the Motorola 146805 and
68HC05, as it recognizes the extra instructions implemented by those processors.

The CSC 8048 Assembler is also capable of assembling programs written for the Intel 8022, 80C48, and
80C49, as it recognizes the extra instructions implemented by these processors. It is capable of assembling
programs written for the Intel 8020 and 8021, since the 8048 instruction set forms a superset of those
instruction sets. It is also capable of assembling programs written for the Intel 8035, 80C35, 8039, 80C39,
8040, 8049, 8050, 8748, and 8749, as their instruction sets are identical to that of the 8048. The CSC 8048
Assembler allows the use of registers in expressions, but all registers must be literally coded when
syntactically required, due to ambiguities in the 8048 assembler language.

The CSC 8051 Assembler is also capable of assembling programs written for the Intel 8031 and 8751, as
their instruction sets are identical to that of the 8051. The CSC 8051 Assembler allows the use of registers
in expressions, but the A and C registers must be literally coded when syntactically required, due to
ambiguities in the 8051 assembler language.

The standard Mos 6502 family instruction set and assembler language format is recognized by the CSC
6502 Assembler. Many of the variants, such as those requiring the prefixing of the directives with periods,
are also accepted.

Since the Intel 8085 instruction set forms a superset of the 8080 instruction set, the CSC 8085 Assembler is
capable of assembling programs for both of these microprocessors.

The Zilog Z8 assembler language format is unlike most others in that it is free-format. Since the CSC
Assembler is not free-format, changes, as described below, may be required to convert existing Z8 programs
into a format acceptable to the CSC Assembler. In general, these changes may be made quite simply with a
text editor.

Only one opcode or directive per line is allowed. Thus the following free-format Z8 assembler language
statement:

 label PROCEDURE ENTRY $ABS %0100

should be re-coded as follows:

 label PROCEDURE
 ENTRY
 $ABS %0100

ARRAY structures are not implemented. They may be re-coded as FCC, FCB, DB, and similar directives.

2

Opcodes and assembler directives should not start in the first column, as they may be mis-interpreted as
labels. A label definition may or may not be followed by a colon, if it starts in the first column, but must be
followed by a colon if it does not start in the first column.

Comments may not be continued to successive lines. They may be introduced by either ';' or '!'. Once
started, a comment continues to the end of the line.

For the LDC, LDCI, LDE, and LDEI instructions, the first parameter must be '@RRnnn' to generate
opcodes hex 92, 93, D2, or D3. This is due to a syntactical ambiguity which the Intel assembler resolves by
maintaining a symbol's value and type, but which the CSC Z8 Assembler is unable to otherwise resolve.
The ability to maintain a symbol's type is not worth the overhead.

Since the current version of the CSC Assembler produces absolute code, and does not use a linker, many of
the assembler directives are accepted, but are ignored. This includes MODULE, $SECTION,
$SDEFAULT, CONSTANT, PROCEDURE, ENTRY, GLOBAL, INTERNAL, EXTERNAL, etc. $ABS is
interpreted as ASEG, and $REL is interpreted as CSEG. Labels on these declaratives are allowed, but have
no special meaning beyond their normal interpretation.

RUNNING THE CSC ASSEMBLER

The command line used to execute the CSC Assembler is provided below.

 csc***** source-file [+/-options]

in which '*****' represents the processor name.

The source file name has a default suffix of ".TXT". The object file name has a suffix of ".MXT" and the
file name of the source file without the suffix.

The name selection is limited by the C library and operating system of the host environment. For some
systems, the only suffix allowed on the primary source file name is ".TXT"; in this case, the suffix should be
omitted on the command line.

Only one primary source file name is allowed, but the assembler directives INCLUDE, LIB, and USE may
be used within a source file to specify multiple input files. Library file names have no default prefix or
suffix and must be specified as required by the C library and operating system of the host environment.

There is one peculiarity of the use of the CSC Assembler with OS/9. If OS/9 outputs ERROR #207 when
the user attempts to run the assembler, try first loading the assembler, then running it. If this does not work,
unlink other resident modules before trying again. OS/9 attempts to load some programs twice into memory
under certain conditions; however, the CSC Assembler is so large that this is not possible.

CONTROLLING THE CSC ASSEMBLER

There are several option switches, as noted above, which assist the user in controlling the CSC Assembler's
actions from the command line. The option fields must be preceded by "+" or "-", although there is no
distinction between the two characters, and there is no distinction between upper and lower case in the
option letters.

3

The same options may be set from the OPT directive, using the directive parameters specified in
parentheses in the table below. The last column of the table also provides the default value of the options, as
the first parameter.

 opt description OPT parameters
 B Suppress creation of object file (BIN/NOB/B/-B)
 C List all conditional statements (NOC/CON/-C/C)
 D List assembly during phase 1 (NOD/DEB/-D/D)
 G List only first line of FCC, DEFM, DB, ... (GEN/NOG/G/-G)
 L Suppress assembler listing (LIS/NOL/L/-L)
 O Use separate program and data counters (NOO/OS9/-O/O)
 P Suppress pagination of assembler listing (NOP/PAG/-P/P)
 S Generate symbol table listing (SYM/NOS/S/-S)
 U Suppress symbol name case distinction (NOU/UPC/-U/U)
 W Truncate listing at column 132, not 80 (NOW/WID/-W/W)

The formatted assembler listing is normally sent to the originating terminal. To create a printer or disk file
representing the assembler listing, the terminal output must be redirected in a manner appropriate to the
operating system under which the CSC Assembler is being run.

CSC ASSEMBLER DESCRIPTION

The CSC Assembler accepts standard Motorola, MOS, Zilog, Intel, RCA, and other free-format source
language statements. Each assembler language statement may contain ASCII characters with hex values
between $20 and $7E, inclusive, and must be followed by a carriage return or new line, depending upon the
system. Each tab character is interpreted as a single space.

Four fields on the source line are recognized by the CSC Assembler. These consist of the LABEL, the
OPERATOR, the OPERAND, and the COMMENT fields, separated by one or more space or tab
characters. Tab characters are considered as space characters for field delimiters and for character strings.

The format just described may be represented symbolically as follows:

 [label[:]] [operator] [operand] [comment]

The CSC Assembler attempts to format its output listing according to this format. In case syntax errors are
encountered, part of the operand field may be output at the beginning of the comment field. This may be
helpful in determining the point of the error.

The contents of each of these field are described below.

LABEL FIELD

The label must not be preceded by spaces, unless it is immediately followed by a colon. A colon, if present,
is assumed to be a delimiter, and is not considered to be a part of the label itself. The term "label" in this
manual refers to the contents of a non-empty label field, not including the optional colon.

If the label field is present, is not preceded by spaces, and starts with '*', ';', or '!' (for Z8), the line is
assumed to contain only a comment, which is listed but is not otherwise processed by the assembler.

The label must be unique, unless every occurrence of it is with the SET directive. Except for the EQU,
SET, and similar directives, the value of a label is set to the value of the program or data counter at the
beginning of the line.

4

The label should begin with a letter, and must be composed of the characters 'A' - 'Z', 'a' - 'z', '1' - '9', '$', '.',
'_', in which upper and lower case letters are unique, unless the UPC option is chosen on the command line
or OPT directive.

No label should be the same (case considered unimportant) as a machine register designation or instruction
for a specific microprocessor or an assembler directive, nor may a label have the same name as an
arithmetic operator, for those assembler languages (Zilog, RCA, and Intel) which use alphabetic arithmetic
operator names. If it is necessary to use a label which is the same as a machine instruction or assembler
directive, its definition may be followed by a colon.

The label (and optional colon) must be followed by a space or tab character, if an operator follows the label
on the line.

The label may be of any length, but only the first ten characters are significant, and only the first eight
characters are displayed in the label field on the listing.

OPERATOR FIELD

The operator field follows most of the rules for the label field, with the exceptions that it may be preceded
by a period, that it may be composed of '*=' or '=' (for compatibility with the MOS assembler) or ':=' (for
compatibility with the Z8 assembler), and that letter case is not significant.

The contents of the operator field may be omitted, in which case no operand or comment fields are allowed
in the Motorola and MOS formats. If the label field is not present on a line, the operator field may be
preceded by zero or more spaces.

The CSC 6801 Assembler recognizes operators coded in the form 'lda a' or in the form 'ldaa', but the CSC
6809 Assembler requires 6800 and 6801 simulated operators to be coded in the latter form.

OPERAND FIELD

Operands are considered as composed of one or more character strings and expressions, separated by
commas. Spaces and tab characters outside of quoted strings are allowed in the Zilog, RCA, and Intel
formats, but terminate the operand field in the Motorola and MOS formats. ';' normally separates the
operand and comment fields in the Zilog, RCA, and Intel formats, as does '!' in the Z8 format.

Operands are evaluated for the expression type and value and the addressing mode used. Following the
6809 notation, if the operand field is preceded by '<', direct or zero page addressing or 8-bit indexing mode
is forced, and, if the operand field is preceded by '>', extended or absolute addressing or 16-bit indexing
mode is forced, for Motorola and MOS assembler formats.

8048 and 8051 registers must be referenced as rn, rnn, or rnnn, where n represents a digit.

In case an instruction or directive requires no operand, any operand field is considered part of the comment
field.

COMMENT FIELD

The comment field is optional, and is composed of the remainder of the characters on the line after the
operator and operand fields. ';' normally starts the comment field in the Zilog, RCA, and Intel formats, as
does '!' in the Z8 format.

A total line length of 135 characters is allowed.

EXPRESSIONS

5

Expressions consist of combinations of symbols, constants, program counters, and data counters, separated
by operators. Arithmetic is done using 16-bit unsigned-integer precision.

In the Motorola and MOS formats, expressions may not contain spaces and tabs except within quoted
strings. An expression is terminated when a space, comma, tab, carriage return, new line, or other
unexpected character is found.

In the Zilog, RCA, and Intel formats, spaces and tabs are ignored except for being used as as internal
delimiters. An expression is terminated when ',', ';', '!' (for Z8), carriage return, new line, or other
unexpected character is found.

Following is a summary of the formats for constants:

 Base Prefix Suffix Characters
 Decimal none none 0-9
 Decimal none D 0-9
 Decimal %(10) none 0-9 (Z8)
 Binary % B 0-1 (not Z8)
 Binary %(2) none 0-1 (Z8)
 Octal @ O,Q 0-7
 Octal %(8) none 0-7 (Z8)
 Hexadecimal $ H 0-9,A-F,a-f
 Hexadecimal % none 0-9,A-F,a-f (Z8)
 Hexadecimal %(16) none 0-9,A-F,a-f (Z8)
 ASCII-1 ' none sp-~
 ASCII-1 ' ' sp-~
 ASCII-2 " " sp-~
 n, n<=10 %(n) none 0-(n-1) (Z8)

A repeated quote character, the same as the delimiter, is interpreted as one occurrence of the delimiter
character within the string. Quoted strings are limited to one or two characters in length within expressions,
but have no such length limits as character strings within directives.

Below is a summary of the arithmetic operators supported by the CSC Assembler. They are grouped in
descending order of precedence. Binary operators of equal precedence are evaluated left to right. Unary
operators of equal precedence are evaluated right to left. The relational operators provide a zero value for
false and a nonzero value for true. The operators marked with "(*)" are usable only in the Zilog, RCA, and
Intel formats, and should be separated from adjacent operators and symbols with spaces. The other
arithmetic operators are usable in all formats.

Parentheses should be freely used to reduce the chance that the assembler will interpret an expression in a
different manner from that intended. However, redundant surrounding parentheses may cause mis-
interpretation of expressions in the MOS and Zilog assembler formats. Expressions may be parenthesized
up to twenty levels.

 Operation Operator Format
 grouping () (value)
 unary plus + +value
 unary minus - -value
 unary not not not value (*)
 unary not ! !value (not Z8)
 unary not ^ ^value
 high byte high high value (*)
 high byte { {value

6

 low byte low low value (*)
 low byte } }value
 multiply * value*value
 divide / value/value
 modulus mod value mod value (*)
 modulus \ value\value
 shift right shr value shr count (*)
 shift right >> value>>count
 shift left shl value shl count (*)
 shift left << value<<count
 add + value+value
 subtract - value-value
 equal eq value eq value (*)
 equal = value=value
 less than lt value lt value (*)
 less than < value<value
 greater than gt value gt value (*)
 greater than > value>value
 less or equal le value le value (*)
 less or equal <= value<=value
 less or equal =< value=<value
 greater or equal ge value ge value (*)
 greater or equal >= value>=value
 greater or equal => value=>value
 not equal ne value ne value (*)
 not equal <> value<>value
 not equal >< value><value
 and and value and value (*)
 and & value&value
 or or value or value (*)
 or | value|value
 or ! value!value (not Z8)
 xor xor value xor value (*)
 xor ~ value~value

Symbols are program or data labels, as described above.

The current program counter value is represented by the character '*'. The current data counter is defined
by the character '.' after a MOD directive or if the OS9 option is chosen, and the character '*' otherwise.

OBJECT CODE FORMAT

The CSC Assembler generates object code files using the Motorola S-text hex file format. Although this is
not the format used by many systems directly, it is very portable and avoids the peculiarities of specific
systems. Programs are provided or are available for most common systems to convert S-text files to the
binary format required for specific operating systems and to Intel hex format.

The user is responsible for avoiding the generation of files which may not be loaded on the systems of
interest; for instance, some operating systems do not support dis-contiguous program segments, and some
systems, such as OS9 and UNIFLEX on the 6809, require module header and trailer sequences.

An S-text hex file is formatted by the CSC Assembler as follows:

7

 S1 Start of record
 xx Number of bytes to follow, in hex
 xxxx Address at which to place following data, in hex
 xx..xx Data bytes, in hex
 xx Ones-complement checksum of preceding hex bytes
 cr Carriage return or new line

An S-text hex file is terminated by an S9 record, which may contain an optional transfer address. This
record is formatted as follows:

 S9 Start of record
 xxxx Optional transfer address
 cr Carriage return or new line

The CSC Assembler generates records defining the names and addresses of all symbols defined in the
program, by default. These record are formatted as follows:

 SX Start of record
 xxxx Symbol address
 aaaaaaaa Symbol name
 cr Carriage return or new line

This information may be used by symbolic debugging programs, or it may be sorted by the user for a label
definition cross-reference. It should be ignored by the programs used to convert the S-text hex file format to
other formats.

CONDITIONAL ASSEMBLY

Assembler language programs may be structured using conditional assembly directives. A very convenient
use of conditional assembly capabilities is for customizing programs to a set of parameters, since the
parameters may often be used to control the assembly.

Conditional assembly differs from 'IF' statements in BASIC and other languages in that the conditional
expression is evaluated at assembly time, not at run time, and the source language statements in the range of
the conditional assembly are either included or excluded from the assembly at that point. In BASIC,
program statements are always included in the program, but are dynamically executed or skipped depending
upon run-time conditions.

Further information on conditional assembly may be found under the IFxx, IFP1, IFP2, and RPT directives.

MODULAR SOURCE LANGUAGE

The LIB and USE directives may be used to introduce additional source language files into a file being
assembled. They are very useful for large programs or for source subroutine libraries, and provide many of
the capabilities at the source language level normally provided by a link editor at the object language level.

They assist in the use and development of structured modular assembly source language programs. LIB and
USE have the same meaning and are simply alternative names for the text inclusion function.

Further information on modular source language may be found under the LIB and USE directives.

8

CSC ASSEMBLER OPERATORS AND OPERANDS

The CSC Assembler implements essentially the standard microprocessor manufacturer's operator and
directive lists and formats.

The appropriate microprocessor manufacturer's software manuals and reference cards should be used as
references for the CSC Assembler when used to assemble programs for a given target microprocessor.

The introduction to this manual covers the various assembler languages handled by the CSC Assembler and
should be referred to for information on how the CSC Assembler processes specific assembler languages.

The next section of this manual describes the set of directives implemented by the CSC Assembler. This is
a combination of the standard microprocessor manufacturer's assembler directives for many popular
microprocessors.

Following is a list of 6800/6801 and convenience operators recognized by the CSC 6809 Assembler, in
addition to the standard Motorola set of 6809 instructions. In addition, the CSC 6809 Assembler accepts
the register designations "P", "PC", and "PCR", as well as "DP" and "Z", interchangeably, to assist in
handling programs written for certain non-standard implementations of 6809 assemblers.

 operator definition comments

 aba 6800/6801
 pshs b
 adda ,s+
 asld 6801
 aslb
 rola
 bec ... convenience (branch if error clear)
 bcc ...
 bes ... convenience (branch if error set)
 bcs ...
 cba 6800/6801
 pshs b
 cmpa ,s+
 clc 6800/6801
 andcc #$fe
 clf convenience (clear firq mask)
 andcc #$bf
 cli 6800/6801
 andcc #$ef
 clrd convenience (clear d register)
 clra
 clrb
 clv 6800/6801
 andcc #$fd
 clz convenience (clear zero flag)
 andcc #$fb
 cpx ... 6800/6801
 cmpx ...
 des 6800/6801
 leas -$01,s
 dex 6800/6801
 leax -$01,x
 ins 6800/6801
 leas $01,s
 inx 6800/6801
 leax $01,x
 lbec ... convenience (long branch if error clear)

9

 lbcc ...
 lbes ... convenience (long branch if error set)
 lbcs ...
 ldaa ... 6800/6801
 lda ...
 ldab ... 6800/6801
 ldb ...
 ldad ... 6801
 ldd ...
 lsrd 6801
 lsra
 rorb
 negd convenience (negate d register)
 coma
 comb
 subd #$ffff
 oraa ... 6800/6801
 ora ...
 orab ... 6800/6801
 orb ...
 psha 6800/6801
 pshs a
 pshb 6800/6801
 pshs b
 pshx 6801
 pshs x
 pula 6800/6801
 puls a
 pulb 6800/6801
 puls b
 pulx 6801
 puls x
 reset convenience (reset processor)
 fcb $3e
 rhf convenience (halt and catch fire)
 fcb $14
 sba 6800/6801
 pshs b
 suba ,s+
 sec 6800/6801
 orcc #$01
 sef convenience (set firq mask)
 orcc #$40
 sei 6800/6801
 orcc #$10
 sev 6800/6801
 orcc #$02
 sez convenience (set zero flag)
 orcc #$04
 staa ... 6800/6801
 sta ...
 stab ... 6800/6801
 stb ...
 stad ... 6801
 std ...
 tab 6800/6801
 tfr a,b
 tsta
 tap 6800/6801
 tfr a,cc
 tba 6800/6801
 tfr b,a

10

 tsta
 tpa 6800/6801
 tfr cc,a
 tstd convenience (test d register)
 std -2,s
 tsx 6800/6801
 tfr s,x
 txs 6800/6801
 tfr x,s
 wai 6800/6801
 cwai #$ff

CSC ASSEMBLER DIRECTIVES

The CSC Assembler supports most of the standard Motorola, MOS, Zilog, Intel, RCA, and other assembler
directives. They are summarized below (in alphabetical order) and are described in detail (in logical
groupings) in this section. For MOS and Microsoft assembler compatibility, any of the assembler directives
below may optionally be preceded by a period.

 directive description
 $ABS set program counter or data counter (Z8)
 $REL set program counter (Z8)
 *= set program or data counter
 *EJECT start next line on next page (Zilog, Intel, RCA)
 *HEADING specify page subheading (Zilog, Intel, RCA)
 *INCLUDE divert input to source library file (Zilog, Intel, RCA)
 *LIST ON restore listing (Zilog, Intel, RCA)
 *LIST OFF stop listing (Zilog, Intel, RCA)
 := assign a value to a symbol (Z8)
 = assign a value to a symbol
 ASEG set program counter or data counter
 BLK reserve memory bytes (Zilog, Intel, RCA)
 BYTE form constant byte
 CHAR form constant characters
 COND begin conditional assembly group (Zilog, Intel, RCA)
 CSEG set program counter
 DB form constant bytes (Zilog, Intel, RCA)
 DBYTE form constant double byte
 DD form constant double byte (Zilog, Intel, RCA)
 DEFB form constant bytes (Zilog, Intel, RCA)
 DEFD form constant double byte (Zilog, Intel, RCA)
 DEFL reassign a value to a symbol (Zilog, Intel, RCA)
 DEFM form constant message (Zilog, Intel, RCA)
 DEFS form constant string (Zilog, Intel, RCA)
 DEFT form constant text (Zilog, Intel, RCA)
 DEFW form reversed double byte (Zilog, Intel, RCA)
 DM form constant message (Zilog, Intel, RCA)
 DS form constant string (Zilog, Intel, RCA)
 DSEG set data counter
 DT form constant text (Zilog, Intel, RCA)
 DW form reversed double byte (Zilog, Intel, RCA)
 ELSE reverse conditional assembly sense
 EMOD generate OS9 module trailer
 END provide optional transfer address
 ENDC end conditional assembly group
 ENDIF end conditional assembly group
 EQU assign a value to a symbol
 ERR generate error message

11

 EXTERNAL accepted, but ignored (Zilog, Intel, RCA)
 FCB form constant byte
 FCC form constant characters
 FCS form constant string
 FCT form constant text
 FDB form double byte
 FI end conditional assembly group (Z8)
 GLOBAL accepted, but ignored (Zilog, Intel, RCA)
 IFxx begin conditional assembly group
 INCLUDE divert input to source library file (Zilog, Intel, RCA)
 LIB divert input to source library file
 LIST restore listing (Zilog, Intel, RCA)
 LOAD extend load instruction (RCA)
 MOD generate OS9 module header
 NAM specify page heading
 NAME specify page heading (Zilog, Intel, RCA)
 OPT modify assembler options
 ORG set program or data counter
 OS9 generate OS9 call (6809 only)
 PAG start next line on next page
 PAGE start next line on next page (non-Zilog, Intel, RCA)
 PAGE adjust to next logical page (Zilog, Intel, RCA)
 PG start next line on next page
 REG generate push/pull register list (6809 only)
 RES reserve memory bytes
 RMB reserve memory bytes
 RZB reserve and zero memory bytes
 RPT repeat next line a number of times
 SET reassign a value to a symbol (not Z-80)
 SPC insert blank line in the output listing
 STTL specify page subheading
 SUBTTL specify page subheading (Zilog, Intel, RCA)
 TEXT form constant characters (Zilog, Intel, RCA)
 TITLE specify page heading (Zilog, Intel, RCA)
 TTL specify page heading
 WORD form double byte (reversed for all except RCA)
 USE divert input to source library file
 XLIST stop listing (Zilog, Intel, RCA)
 ZERO reserve and zero memory bytes

DB, DD, DW, DEFB, DEFD, DEFW, BYTE, DBYTE, FCB, FDB, WORD

All of these directives expect one or more expressions separated by commas and generate the corresponding
object code, starting with the current value of the program counter, and adjust the program counter to
correspond to the number of bytes of object code generated. The BYTE and FCB directives restrict these
expressions to eight bits and generate one byte per expression. The DW, DBYTE, DEFW, FDB, and
WORD directives generate two bytes per expression, in high-byte, then low-byte order, except for RCA, in
which case they generate the bytes in the opposite order. adjacent commas are interpreted as if a zero were
between them, and a leading comma is interpreted as if a zero preceded it.

The format of these directives is as follows:

 [label] db expression,...,expression
 [label] dd expression,...,expression
 [label] dw expression,...,expression
 [label] defb expression,...,expression
 [label] defd expression,...,expression
 [label] defw expression,...,expression
 [label] byte expression,...,expression
 [label] dbyte expression,...,expression

12

 [label] fcb expression,...,expression
 [label] fdb expression,...,expression
 [label] word expression,...,expression

CHAR, DB, DEFB, DEFM, DEFT, DM, DT, FCC, FCS, FCT, TEXT

All of these directives expect one or more character strings and expressions to be placed into memory
starting with the current value of the program counter. The strings must be delimited by characters which
may not appear as operators or in numbers, such as "'", """, "#", "?", ".", ":", etc., and each beginning
delimiter must match the ending delimiter. If a double adjacent occurrence of a delimiter is found within a
character string, it is interpreted as a single occurrence of that character within the string.

CHAR, DB, DEFB, DEFM, DM, FCC, and TEXT are interpreted identically. FCS is similar to the other
directives in this group except that the high-order bit is set on the last character generated. DEFT, DT, and
FCT are similar to the other directives except that the the length of the string (in binary) is placed into the
character before the string, and the string is offset by one character towards higher addresses.

All the directives allow 8-bit expressions to be mixed with the strings to specify character values outside of
the range of valid characters which may be placed within strings ($20 thru $7E). If more than one string or
expression are coded, they must be separated by commas. Two adjacent commas are interpreted as if a zero
were between them, and a leading comma is interpreted as if a zero preceded it, but a trailing comma is
ignored.

The format of these directives is as follows:

 [label] char "text",...,expression,...
 [label] db "text",...,expression,...
 [label] defb "text",...,expression,...
 [label] defm "text",...,expression,...
 [label] deft "text",...,expression,...
 [label] dm "text",...,expression,...
 [label] dt "text",...,expression,...
 [label] fcc "text",...,expression,...
 [label] fcs "text",...,expression,...
 [label] fct "text",...,expression,...
 [label] text "text",...,expression,...

BLK, DEFS, DS, RES, RMB

These directives cause the program or data counter to be incremented by a specified 16-bit amount. The
data counter is incremented if the OS9 option is set, and the program counter is incremented if the OS9
option is reset.

The format of these directives is as follows:

 [label] blk expression
 [label] defs expression
 [label] ds expression
 [label] res expression
 [label] rmb expression

RZB, ZERO

The RZB and ZERO directives generate a specified number (0 to 255) of binary zeroes in the object
program and increment the program counter by the corresponding amount.

13

The format of these directives is as follows:

 [label] rzb expression
 [label] zero expression

DEFL, EQU, REG, SET, :=, =

The DEFL, EQU, REG, and = directives assign a value to a label. The DEFL and SET directives assign or
reassign a value to a label. The SET directive is not available in the Z-80 assembler, since it uses SET to
designate a machine instruction. The := directive may be used only in the Z8 assembler language.

Unless every occurrence of the assignment of a value to a label is with the SET or DEFL directive, the
assembler will flag every occurrence as a multiple definition, unless the value assigned on every definition
is identical. If the value assigned to a label with an EQU, REG, =, or := directive varies from pass 1 of the
assembler to pass 2, the assembler will note a phasing error.

The REG declarative (valid only on the 6809) differs from the others in this group in that it expects a 6809
register list and generates the mask corresponding to the push/pull instruction postbyte. The 6809 PSHS,
PULS, PSHU, and PULU instructions are allowed by the CSC 6809 assembler to have immediate operands,
in order to use such separately-defined masks. The 6809 EXG and TFR instructions are also allowed to
have immediate operands by the CSC 6809 Assembler, but the mask defined by the REG directive should
not be used with them, as the bit positions are different.

The format of these directives is as follows:

 label = expression
 label := expression
 label defl expression
 label equ expression
 label reg register-list
 label set expression

$ABS, $REL, ASEG, CSEG, DSEG, ORG, *=

These directives set the program or data counter to a specified value. The CSEG and $REL directives sets
the program counter and the DSEG directive sets the data counter. The $ABS, ASEG, ORG, and *=
directives set the program counter, unless the OS9 option is set, in which case they set the data counter. The
DSEG directive also causes '.' in expressions to represent the current value of the data counter, and the other
directives cause '.' to represent the current value of the program counter, unless the OS9 option is set. The
$ABS and $REL directives may be used only in the Z8 assembler language.

The default value of both counters is zero, and all programs have an assumed ' org 0' at their beginning. A
label on one of these directives receives the value of the program or data counter before it is modified by
the directive. This facility is used primarily when using the MOS 6502 assembler in statements of the form
"label *= *+x" to reserve memory space. The RMB, DS, and similar directives are normally used for this
purpose.

The format of these directives is as follows:

 [label] $abs expression
 [label] $rel expression
 [label] *= expression
 [label] aseg expression
 [label] cseg expression
 [label] dseg expression
 [label] org expression

14

PAGE

For the Zilog, Intel, and RCA formats, PAGE causes the program or data counter to be adjusted to the
beginning of the next logical page of memory (with address ending with hex 00). If a label is coded, it
receives the address of the adjusted page.

The format of this directive is as follows:

 [label] page

END

The END directive has historically been used to indicate the end of the input source file to an assembler.
The CSC Assembler uses the END statement only to provide an optional transfer address for those
operating systems which support them. If no transfer address appears, no comments should appear on the
END directive (in Motorola and MOS formats).

The format of this directive is as follows:

 [label] end [expression]

LOAD

The LOAD directive is used in the RCA 1805 assembler to generate an extended register load operation. It
has two operands, separated by commas. The first is expected to be a register designator or expression with
value 0 to 15. The second is expected to be a 16-bit expression.

The equivalent code generated is indicated below.

 ldi high(expr)
 phi reg
 ldi low(expr)
 pho reg

The format of this directive is as follows:

 [label] load register,expression

NAM, NAME, STTL, SUBTTL, TITLE, TTL, *HEADING

These directives are used to provide a heading printed at the top of each page if the PAG option is set. No
distinction is made between the NAM, NAME, TITLE, TTL, and *HEADING directives. The STTL and
SUBTTL directives are listed but have no other meaning. The maximum length of the title is fifty
characters.

The format of these directives is as follows:

 nam [heading]
 name [heading]
 sttl [heading]
 subttl [heading]
 title [heading]
 ttl [heading]
 *heading [heading]

15

PAG, PAGE, PG, *EJECT

PAGE has a different meaning for Zilog, Intel, and RCA formats from the other formats, and is described
elsewhere in this manual. For PAG, PG, *EJECT, and for PAGE in the other formats, if the PAG option has
been set, the next line of the output listing will be placed at the top of the next page. Vertical formatting of
the output listing is performed with form feeds.

The format of these directives is as follows:

 pag
 page
 pg
 *eject

SPC

The SPC directive inserts one blank line in the output listing.

The format of this directive is as follows:

 spc

OPT

The OPT directive modifies the same list of assembler options which may be modified on the command
line. The codes to be used as operands of the OPT directive are separated by commas and have all been
described in an earlier section.

The format of this directive is as follows:

 opt opnd,...,opnd

LIST, *LIST ON

The LIST and *LIST ON directives are equivalent to the OPT LIS directive.

The format of these directives is as follows:

 list
 *list on

XLIST, *LIST OFF

The XLIST and *LIST OFF directives are equivalent to the OPT NOL directive.

The format of these directives is as follows:

 xlist
 *list off

ERR

The ERR directive generates an error. It is normally used to indicate that invalid options have been chosen.

The format of this directive is as follows:

16

 [label] err [comments]

COND, IFxx

The COND and IFxx directives cause the lines up to the next matching ENDC, ENDIF, FI, or ELSE
directive to be included only if the expression bears some specified relationship to a zero value. No forward
references are allowed in the expression. COND and IFNE are processed in an identical manner.

If a matching ELSE directive is found before the matching ENDC, ENDIF, or FI directive, the test
condition is reversed for the succeeding lines. IFxx - ELSE - ENDIF groups may be nested up to fifteen
levels.

The syntax of these directives is as follows:

 cond expression
 ifxx expression

in which 'xx' may be one of the following:

 suffix condition for inclusion
 (none) not equal zero
 C equal zero
 EQ equal zero
 F equal zero
 GE not less zero
 GT greater zero
 LE not greater zero
 LT less zero
 N equal zero
 NE not equal zero
 T not equal zero

IF1, IF2, IFP1, IFP2

The IF1, IF2, IFP1, and IFP2 declaratives allow for assembly of the included lines only on pass 1 or on pass
2, respectively. They require no expressions. The included or excluded lines for these directives are
terminated by ELSE, ENDIF, and ENDC directives.

The IF1 and IFP1 directives may be used to cause source libraries containing only constant EQU and SET
directives to be read only on the first pass, speeding up the assembly process.

The syntax of these directives is as follows:

 if1
 if2
 ifp1
 ifp2

IFDEF, IFNDEF

The IFDEF and IFNDEF declaratives allow for assembly of the included lines only if a symbol has already
been defined or not defined, respectively. They are similar to the IFxx directives in interpretation and
usage.

The syntax of these directives is as follows:

17

 ifdef symbol
 ifndef symbol

ELSE

The ELSE directive must match a corresponding IFxx directive, and reverses the state of the conditional
assembly, unless the entire group is conditionally excluded.

The syntax of this directive is as follows:

 else

ENDC, ENDIF, FI

The ENDC, ENDIF, and FI directives must match a corresponding IFxx directive, and restore the state of
the conditional assembly to that before the corresponding IFxx or IFPx directive. FI may be used only in the
Z8 assembler language.

The format of these directives is as follows:

 endc
 endif
 fi

RPT

The RPT directive provides for the exclusion of or repetition of the next line in the source file a specified
number of times. No forward references are allowed in the expression, and the value is taken modulo 256.
RPT directives may not be nested.

The syntax of this directive is as follows:

 [label] rpt expression

INCLUDE, LIB, USE, *INCLUDE

The INCLUDE, LIB, USE, and *INCLUDE directives may be used to introduce source language files into
a file being assembled. They are usually very useful for large programs or for source subroutine libraries,
and provide many of the capabilities at the source language level normally provided by a link editor at the
object language level. They assist in the use and development of structured modular assembly source
language programs. The INCLUDE, LIB, USE, and *INCLUDE declaratives have the same interpretation.

The syntax of these directives is as follows:

 [label] include file-name
 [label] lib file-name
 [label] use file-name
 [label] *include file-name

The file-name must obey all rules of the operating system under which the program is being assembled. No
suffix is assumed.

18

MOD

The MOD directive generates an OS9 module header and initializes the CRC counter for the corresponding
module trailer generated by the EMOD directive. It automatically sets the OS9 assembler option to specify
the maintenance of separate data and program counters, as required in OS9 assembler programs. It should
not be preceded by an ORG directive unless the OS9 option is on the command line.

The MOD directive expects an operand composed of four or more expressions separated by commas.
These expressions are used in the construction of an OS9 module header. Review the "Microware OS9
System Programmer's Manual" for further information on the MOD and EMOD directives.

The format of this directive is as follows:

 [label] mod program-length,name-offset,type/lang,
 attribute/revision,[execution-offset,
 permanent storage size,...]

EMOD

The EMOD directive generates an OS9 module trailer corresponding to an OS9 module header. The 24-bit
CRC of the module is output as object code correctly only under OS9.

The format of this directive is as follows:

 [label] emod

OS9

The OS9 directive generates the code to perform OS9 calls for the 6809. It requires one 8-bit expression as
an operand. It generates the following equivalent 6809 instruction sequence:

 swi2
 fcb expression

The format of this directive is as follows:

 [label] os9 expression

UTILITY PROGRAMS

Miscellaneous utility programs are normally included with the assembler programs. Their functions may
generally be determined by executing them with no arguments, as they will provide a usage prompt. In
particular, utility programs with names starting with s1 are usually included to provide the capabilities of
translating object file formats.

ERROR MESSAGES

The CSC Assembler issues error messages to indicate problems with processing the source program.
Following is a complete list of the error messages and a brief explanation of each.

19

Can't open object
assembler unable to create output object file

Can't open source
assembler unable to find input source file

xxxxxxxx Could not open
assembler unable to find indicated input library file

Error
ERR directive

Internal error
badly-formatted statement or assembler error

Invalid addressing mode
inappropriate addressing mode for instruction

Invalid conditional structure
unmatched ELSE or ENDC/ENDIF directive or bad nesting

Invalid forward reference
unresolved or illegal forward reference in operand

Invalid label
use of label on a directive which does not allow a label, lack of a label on a directive which
requires a label, etc.

Invalid numeric constant
illegal characters in a numeric constant

Invalid operator
contents of the operator field not recognized

Invalid quoted string
too-long quoted string ('x or 'x' or "xx") in an expression

Invalid register specification
non-register in a register list

Library nest error
too-deep nesting of library files

Phasing error
symbol has different value on the second pass of assembler than it had on first pass

Symbol table overflow
assembler is unable to add another symbol

Symbol table space full
assembler is unable to add another symbol

Syntax error
badly-formed expression or illegally-formatted operand

20

Unbalanced parentheses
an expression has unmatched parentheses

Undefined symbol
a symbol never appears as a label

Value out of range
the value of an expression exceeds its limit

21

	Copyright Notice
	Limited Warranty Statement
	Problems and Improvements

	INTRODUCTION TO THE CSC ASSEMBLER
	RUNNING THE CSC ASSEMBLER
	CONTROLLING THE CSC ASSEMBLER
	CSC ASSEMBLER DESCRIPTION
	OBJECT CODE FORMAT
	CONDITIONAL ASSEMBLY
	MODULAR SOURCE LANGUAGE
	CSC ASSEMBLER OPERATORS AND OPERANDS
	CSC ASSEMBLER DIRECTIVES
	UTILITY PROGRAMS
	ERROR MESSAGES

