
COCO SLEUTH
Program Analysis and Debugging Tool

by Edgar M. (Bud) Pass, Ph.D.

Copyright (c) 1983 by
Computer Systems Consultants, Inc.

Copyright Notice

This manual and any accompanying materials described by this manual are
copyrighted but have been
released for public use by Bud Pass.

Limited Warranty Statement

Computer Systems Consultants, Inc., and its agents, makes no express
or implied warranties concerning the applicability of COCO SLEUTH to a
particular purpose. Liability is limited to the original license
cost. This warranty is presented expressly in lieu of all other
warranties, expressed or implied, including those of merchantability
and fitness for use and of all other obligations on the part of
Computer Systems Consultants, Inc. and its agents.

Problems and Improvements

Users are encouraged to submit problems and to suggest or to provide
improvements for COCO SLEUTH. Such input will be processed on a best
effort basis. Computer Systems Consultants reserves the right to make
program corrections or improvements on an individual or wholesale
basis, as required. The company is under no obligation to provide
corrections or improvements to all users of COCO SLEUTH. In the case
of specific situations requiring extensions to COCO SLEUTH or major
assistance in its use, consulting is available on a pre-arranged,
for-fee basis.

ocr» r*nrr\ ct eij»pu 1 rriOVPTfiMT 1 1 QR1

TABLE OF CONTENTS

I. Overview of COCO SLEUTH

II. SLEUTH — Disassembler/File Editor

A. Getting Started

B. General Operating Notes

C. Commands

1. Address Range Commands

2. Mode Commands

3. Operation Commands

4. Miscellaneous Commands

D. Object Code Dump & Screen Editor

E. Disk Files Used by SLEUTH

III. CHGNAM — Name Changer

A. Getting Started

B. Disk Files Used

C. Operating Hints

IV. XREF — Cross-Reference Generator

A. Getting Started

B. Disk- Files Used

C. Operating Hints

V- Adapting SLEUTH, CHGNAM, and XREF to Your System
VI, SLEUTH Command Summary

r^cr> r>nr-n ct tpnrpu o COPYRIGHT 1983

COCO SLEUTH--An Overview

COCO SLEUTH is a collection of three programs which enables the
user to examine and/or modify binary program files on disk or in
memory, on Tandy TRS-80 Color or TDP-100 or similar computers, with at
least 32K bytes of memory and at least one disk drive.

Programs may be disassembled into source code format and the
source may be displayed, printed, or saved on disk. Labels produced
by SLEUTH may be changed globally to labels of your own preference.
Cross reference listings of labels may be produced to aid in debugging
or modifying the program. Programs in ROM or on disk may be "altered"
with the altered program being saved on a disk file; the resultant
file could then be used to program a new ROM, etc.

The three programs are named SLEUTH, CHGNAM, and XREF. These are
the Disassembler, Name-Changer, and Label Cross Reference generator,
respectively* The programs are supplied as 6809 object code files for
the Tandy TRS-80 Color or TDP-100 or similar computers. The
processors which may be analyzed are 6800, 6801, 6802, 6803, 6805,
6808, 6809, and 6502.

ncn nnnn qt.futw 3 COPYRIGHT 1983

SLEUTH- -A DISASSEMBLER/FILE EDITOR

This program is the "work-horse" of the COCO SLEUTH package.
Some of the functions of the program include the following:

1- Disassemble a program from a disk file and write the source
to another disk file*

2. Disassemble a program in memory and write the source to a
disk file.

3. Dump the object code of a binary file in memory-dump format
and allow modifications to the file. The modified file can
then be written back to disk.

4. Dump object code from memory, allow modifications, and write
modified program to disk.

In all the above cases, any modifications made by the user do not
actually change the original object code. Rather, the changes are
stored in a table and overlaid into the original code when the output
file is written to disk. In the case of operating on files from disk,
the object program is never actually loaded into memory. Instead,
tables are set up in memory describing various aspects of the program
and the file is read, one sector at a time, as needed. These tables
are used to build the display when an object dump or disassembly is
performed. The net effect of this is that the original program,
either on disk or in memory, is undisturbed. This means that
operating system code and code in ROM can be analyzed and "changed."

Once a program is "loaded", it is usually necessary to classify
all parts of the program according to usage. That is, each byte must
be identified as data, variable, text, instruction, etc. This is so
that when a disassembly is performed, the source code generated will
correctly represent the program as it was originally written.
Commands are included in SLEUTH to classify memory. Once memory has
been classified as to usage, the object code dump will indicate how
each byte has been designated.

If the program is being modified, a screen-edit capability is
included to make the changes easier. The program is "loaded" and an
object code dump is made of the section where changes are necessary.
The screen-edit mode is then entered and the cursor positioned to the
location that needs to be changed. The new value is entered at the
cursor location and is recorded. Any or all of up to 256 bytes within
a given dump may be changed while in the screen-edit mode. If the
cursor is in the hexadecimal area of the dump, the new values are
entered in hex. If the cursor is positioned in the ASCII area of the
dump, the new values are entered as ASCII characters.

Since the process of classifying all portions of a large program
can be very tedious and time consuming, provision is made for storing
all descriptive information about the program in a disk file. If it
is necessary to run SLEUTH several times (quite likely when working on
large programs such as BASIC) , it is not necessary to manually reenter
the various data or variable areas each time. They can be recalled
immediately from the parameter file on disk.

In order to take advantage of position-independent coding which
nor* rnm ct.pttth 4 COPYRIGHT 1983

is supported by the 6809 microprocessor, a 6801/2/3/8/9 program

processed by this system may be converted into position-independent
source by setting the "6809 position-independence switch." Some
careful checking must be done after this conversion to verify that the
6809 instructions are addressing data correctly. Some manual changes
will usually be necessary to complete the conversion.

Very large programs , such as BASIC or other system programs,
generate source which . is quite long--sometimes too long to fit on the
disk. To accomodate this problem, source programs can be broken up
into several parts or "segmented." This is accomplished by first
classifying the entire program as described above. Several trial
disassemblies will, no doubt, be necessary to verify that all of the
program code has been classified properly. Once you are satisfied,
new disassembly limits may be specified such that you are now only
disassembling part of the program. Each program segment can be
written to a disk file. By changing the disassembly limits, the
entire program can be disassembled into source segments of manageable
size. Each segment will have all the necessary equates to link it to
the other segments.

When a program is disassembled by SLEUTH, it is very possible
that not all equates generated will appear in the same part of the
listing. The source listing is output with all component parts in
memory-address order. Consequently, low address equates will appear
first in the listing while high address equates (most system and I/O
calls) will appear at or near the end of the program. After the
source has been written to disk, a text editor with block-move
capability can be used to group the equates.

Labels generated by SLEUTH will be of the form "Z[address] " .
This means that all labels will start with a "Z" followed by a 4-digit
hex number which represents the address at which the label was
defined. If the program has been disassembled properly, when
reassembled on the same type processor, all labels should assemble at
their corresponding addresses. This may vary, however, when working
with 6809 code. Not all 6809 assemblers follow the same rules for
defining the offset used with PC-relative addressing. Some assemblers
may force a 16-bit offset when an 8-bit offset was used in the
original code. This will cause a slight displacement of labels in the
reassembled program and the displacement will increase as the program
is processed. This problem can be alleviated by setting the
Cross-Assembler flag "on" (see M B" command), 6809 mode (see M Z"
command), and Position-independence flag "off" (see "P" command.) This
combination should produce the correct length PCR code.

r^r\ry\TT>rn.iarn 1QQ*}

GETTING STARTED

Insert the disk containing the file SLEUTH/BIN into the drive
assigned as the default drive (normally zero) and enter LOADM "SLEUTH"
and EXEC, SLEUTH should load and begin execution. A title and
heading will be displayed. The system prompt "?" is then displayed,
indicating that the system is ready to accept commands from the
keyboard. For a list .of commands (MENU), enter a "?" from the
keyboard.

If you plan to use input or output disk files, insert the
appropriate diskette into a disk drive. The disk containing SLEUTH
may be removed as it is no longer required. You are now ready to

procede with the operating session.

GENERAL NOTES ON OPERATION OF SLEUTH

At any time that SLEUTH is waiting for input from the keyboard,
hitting BREAK will abort the operation in progress and return the M ?"
prompt. At any time a non-hexadecimal number is entered when SLEUTH
is expecting a hexadecimal number, the current operation is aborted
and the "?" prompt is displayed.

The operation of the space bar while in SLEUTH is somewhat
different from normal COCO operations. When SLEUTH is outputting to
the screen or printer, hitting the space bar will stop output
temporarily. However, the operation of the break key after using the
space bar varies, depending upon the operation in progress. If you
are doing a disassembly using the "D" command and no output file is
used, hitting return terminates the operation and displays the "?"
prompt. If an output file is in use while concurrently outputing to
the screen and/or printer, hitting return will terminate the screen or
printer output, but the disk output will continue. Once this has been
done, the output to the screen or printer cannot be restarted until
the disassembly is completed. In all other operations in SLEUTH,
hitting return has the same effect as hitting the space bar a second
time. If you want to terminate an operation, hit the break key until
the operation is terminated; because of the unbuffered nature of the
keyboard on the COCO, this will normally require several attempts.

During certain operations in SLEUTH, there may be times when
nothing seems to be happening and the machine seems to have "died" .
This happens during a disassembly or when writing a new object file
and a large section of "ignored" code is encountered. (See the "K"
and "R" commands for information on ignored code) . When this happens,
and you think the' system is "hung", wait at least five minutes before
attempting any corrective action.

SLEUTH COMMANDS

The Disassembler Command set is divided into the following four
categories :

Address Range Commands

Mode Commands

Operation Commands

Miscellaneous Commands
Address range commands are used to classify memory as described in the
overview or to change the disassembly range. Each command of this
type will prompt for a starting and ending address. Thus a single
byte or a group of bytes may be classified with one command. Mode
commands are used to change the operating mode of SLEUTH. There are
four different mode switching commands. Operation commands initiate
some major operation, such as disassembling a program, executing an
object code dump, making changes to the program, simulating a RESET
operation, etc. Each of the commands will now be discussed in detail.

ADDRESS RANGE COMMANDS

Note — These commands can be used in any order, at any time that the
"?" prompt is displayed. Each command will define one address range
(Start-End) per use. Address range entries are terminated with a

<return>. Any given address range may be classified more than once.
In this case, the LAST classification entered for a particular byte or
address range is the one that will be used by the disassembler.

A — set FDB Address Range

This command is used to define sections of code containing
two-byte data items. These are usually 16-bit addresses in a
table. Each FDB defined by this command will be assigned a
label by SLEUTH. In 6502 mode, the two-byte pairs will be
reversed in sequence. Each byte within a specified FDB range
will be indicated in an object code dump by placing the symbol
"I" immediately after the hex value.

C — set FCC Address Range

This command is used to define sections of code containing
text or ASCII data. Any code within the specified range which
does not have an ASCII equivalent will automatically be marked
as FCB's. Each byte within a specified FCC range will be
indicated in an object code dump by placing the symbol "#"
immediately after the hex value.

H — set FCB Address Range

This command is used to define sections of code which are used
to store single byte hex data. Each byte within a specified
FCB range will be indicated in an object code dump by placing
the symbol "(" immediately after the hex value.

I — set INSTRUCTION Address Range

This command is used to identify sections of code which

contain program instructions. This is the default
classification for all of memory. Each byte within a
specified INSTRUCTION range will be indicated in an object
code dump by placing the symbol ")" immediately after the hex
value .

J — set INSTRUCTION & ASCII Adress Range

This command is very similar to the "I" command with the
difference that when a disassembly is performed, code marked
by the n J" command will have the ASCII character equivalent of
each byte of the instruction displayed to the right of the
instruction. Each byte of code marked with the "J" command
will be indicated in an object code dump by placing the symbol
"*" immediately after the hex value.

K — set IGNORED Address Range

Frequently, an object program to be analyzed will contain more
than one contiguous segment of code. These segments may be in
completely different areas of memory. It is desirable to have
SLEUTH "ignore" anything between segments. When disassembling
from disk, any address ranges not defined but between the
start and end addresses are implicitly ignored by SLEUTH. The
"K" command marks sections of memory which should be IGNORED
by SLEUTH. Bytes marked by the "K" command are indicated in
an object code dump by placing the symbol "+ M immediately
after the hex value.

R — set RMB Address Range

Frequently, an object program to be analyzed will contain more
than one contiguous segment of code, and may contain logically
reserved areas of memory not represented by the binary object
file. It is desirable to have SLEUTH "ignore" anything
between segments of code, yet it is desirable to be able to
define these areas as RMB areas so that SLEUTH will output a
better representation of the program. Values of bytes found
in RMB areas are ignored. Bytes marked by the "R" command are
indicated in an object code dump by placing the symbol "" "
immediately after the hex value.

MODE COMMANDS

These commands are used to change the operating mode of SLEUTH. The
current operating mode can be determined by using the "L" command
described later in this manual.

B--Flip Cross-Assembler Switch

The disassembled code produced for the 6502 and 6805 options
is oriented toward a 6809 macro assembler, rather than a 6502
or 6805 assembler. This is for the convenience of those who
wish to do program development work for the 6502 or 6805 on a
6809. (Computer Systems Consultants markets cross-assembly
macro sets for the 6800, 6801, 6805, and 6502 which run on a
6809 macro assembler.) When the M B" option of SLEUTH is turned

er Pnmu Q rnOV\. ,T,HT 1 9R3

on, page zero addresses for 6800, 6801, 6805, and 6502 are
indicated by the use of "<" prefixing the operand and extended
addresses are indicated by ">" prefixing the operand. For the
6805 or 6809, eight-bit index offsets are indicated by M < "
prefixing the operand while sixteen-bit offsets are indicated
by ">" prefixing the operand.

E — Flip Separate Label Switch

Many programmers prefer to assign labels as an equate to the
current program counter value rather than associate the label
with a program instruction (e.g. LABEL EQU *). If the "E"
switch is on, all program labels produced by SLEUTH will be
equated to the current PC value. If the "E M switch is off,
labels will be assigned to the current program instruction
whenever possible.

P — Flip 6809 Position-Independence Switch

The "P" command is used to assist in the production of 6809
position-independent code. It makes the following changes in
the output text:

1. All extended and direct addressing references to addresses
within the program area are changed to
program-counter-relative by adding " ,PCR H after the
operand .

2. All three-byte immediate instructions are changed to the
corresponding PCR LEA instruction.

YOU must make the following changes to complete the
conversion:

1. All references to FDB ' s within the program must be
rewritten to be relocatable, perhaps through the use of
program-counter-relative LEA instructions.

2. All old immediate and new LEA instructions must be
reviewed to ensure that correct values are still loaded
into the various registers.

3. All out-of-program references must be reviewed to insure
that they refer to truly constant address and not simply
to program variable storage areas, which should be changed
to PCR within the program.

6800/1/3/8 code may be converted to 6809 position-independent
code in a similar manner but the resultant code must be
checked very carefully to ensure the program logic has not
been changed. 6805 and 6502 object code may not be processed
in this manner. Any attempt to do so will be ignored.

Z — set Processor Type

The "Z" command specifies for which processor the current
input file is written. The "Z" command will prompt for one of
five choices. A "0" selects 6800, 6802, or 6808. A "1"
selects 6801 or 6803. A "2" selects 6502. A "5" selects
6805. A "9" selects 6809. The default processor selected

ncr* nr\nr\ ct rriTU Q (TfiPYRTfiHT 1983

will be the 6809.
OPERATIONAL COMMANDS

These commands perform specific operations on memory or the input
file.

D — Disassemble Program

The "D" command initiates the disassembly process. The user
is asked for an output file name. If none is desired, hit the
return key. The following prompt will appear:

P (printer) , B(both) , T (terminal) ,N(none)
The M P" subcommand causes disassembler output to be sent to
the printer. The "T" subcommand causes output to be sent to
the screen, while the "B" subcommand does both. If no output
disk file was specified, the "N n subcommand causes the output
to be sent to the screen. If an output file is used, the "N"
subcommand will suppress the display of SLEUTH output. If an
output file has been specified, SLEUTH will prompt for a title
and assembler options. If a message of the form "'TABLE
OVERFLOW 1 ' appears, the input file has too many labels to
process and must be redefined for smaller ranges of addresses
and processed in parts.

F — Exit COCO SLEUTH

The "F" command terminates the current operation, closes any
open files, and prepares for a RESET operation. It must be
followed with a return. If you desire to save the current
operating parameters or update the working file, these
operations must be performed BEFORE the "F" command is used.
Once "F" is typed, all current parameters and work file are
lost .

M — Examine and/or Change Program Code

The "M" command operates in a similar manner to the memory
change function of most system monitors. The user is prompted
for a starting address. The address entered is displayed
followed by the hex value of the current contents of that
location. To change the value, enter the new 2-digit hex
value. The next memory location will then be displayed.
Hitting any character except """ or return or a valid hex
digit causes the next sequential location to be displayed.
Entering " "" causes the previous memory location to be
displayed. Return terminates the examine/ change mode.

Q — Object Code Display (Dump)

The "Q" command is used to invoke the object code display
function. If an input file has been specified with the "S"
(described later) command, the first 128 bytes of the input
file will be displayed. If no input file has been specified,
then a disassembly range must first be entered with the "N"
command. More details on the use of the Object Code Dump are
provided later.

rcr nnrn qt.ftvth 10 COPYRIGHT 1983

T — Fill Program Code with a Specified Byte

This command will cause the specified byte to replace every
byte within the address range specified. You will be prompted
for starting address, ending address, and the byte to insert.

U--Display Directory of a Mounted Diskette

This command allows the display of the directory of a mounted

diskette while still in SLEUTH. Either a drive number or

return must be entered. If return is entered, drive zero is
assumed.

V — View Object Code & Perform Absolute Disassembly

The "V" command will perform an absolute disassembly of the
object code within the disassembly limits previously
established. No labels are generated. All relative address
instructions are resolved to absolute addresses. This
provides a quick method of examining a section of code without
doing a formal disassembly of the entire program. Memory
classification is supported by the "V" command.

W — Write Modified Binary File to Disk

This command causes a new COCO binary file to be written to
the disk. All changes made up to this point will be inserted

to the file as it is written, and all multiple byte
definitions are resolved. The name of the output file is
requested prior to writing the file. The default file suffix
is "/BIN". "W" also displays a memory map on the screen for
the object file being written.

Y — Find Hexadecimal String in Program Code

This command finds all occurances of a string of up to 31 hex
bytes within the current disassembly limits. The user is
prompted for the search limits (start and end addresses) and
the hex string for which to search. The hex string must be
entered as continuous pairs of hex digits with no spaces
intervening (e.g. 23DB2390A4). The starting addresses of all
occurances of the string are displayed on the screen.

MISCELLANEOUS COMMANDS

G — Specify Auxiliary Parameter File (Input or Output)

When the *'G" command is entered, the program will prompt for
an input file name. If only return is entered, the program
will prompt for an output file name. The Parameter file is
used to store information on the current operating mode, input
file name, classification of memory, and other operating
parameters. As described earlier, it is sometimes necessary
to repeat the memory classification and trial disassembly
process several times before the disassembly comes out
correctly. To avoid retyping all of the various memory

classification commands each time, use the "G n command to save
everything done up to this point. Once the parameters have
been saved, you may return to this exact point after
restarting by using "G" command to retrieve the parameters
previously saved .

L — List Current Control Information

The "L" command displays the current operating mode,
disassembly limits, offset load values, and all memory
classification ranges and types currently in effect. It also
shows any memory changes that have been made with the M M" ,
M Q" , and "T" commands.

N--Set New Disassembly Range

This command defines the range of code that will be
disassembled when the certain commands are used. The "N"
command prompts for start and end addresses and for a transfer
address. If no transfer address is desired, enter "FFFF" .

— Set Offset Load Value

The "0 M provides an offset value which is added to each
address in the program being processed. If the program is
being processed from disk, the offset value is applied when
the input file is loaded. If the program is being processed
from main memory, the offset value may be changed as often as
desired, since the offset value is applied during the actual
process of acquiring data from memory.

S—Specify new Input File and do Partial Restart

The M S" command prompts for the name of an input file to be
used by SLEUTH. The file must be a COCO binary type of file.
Any address range commands, separate-label switch, or
position-independence switch settings previously in effect are
cleared. The previous operating mode and address offset are
preserved. If an input file is specified, the disk may not be
removed until another "S" command is entered or SLEUTH is
terminated.

X — Specify new Transfer Address

The M X" command changes the transfer address or adds a
transfer address to a file which previously did not have one.
The transfer address is the initial program execution address.

COPYRIGHT 1983

OBJECT CODE DUMP AND SCREEN EDIT FUNCTIONS

The object code dump provides a "window" through which you can
view a portion of memory or an object program in a convenient display
format. For the COCO, this window consists of 16 lines of 8 bytes per
line for a total of 128 bytes of code; special versions of SLEUTH . are
available from CSC for smaller and larger displays.

If an input file has been specified, anything outside of the
disassembly limits will show as zeros. If an input file has not been
specified, the current contents of memory will be displayed
incorporating any "changes" made. As indicated previously, object
code on disk or in memory is not actually changed, but the object code
dump will show the changes entered.

After each byte in the hexadecimal display, there is a symbol
indicating the classification of that byte. In the legend at the
right margin of the display is a table showing these symbols and the
command used to perform the classification. The current disassembly
limits are displayed in the upper right corner of the display while a
list of available commands is in the lower right corner.

SUB-COMMANDS ■

N — Display Next Page of Memory or File

This sub-command causes the next page of memory or the input
file to be displayed. Hitting the return key will cause the
same operation. If the next page is outside of the
disassembly range, the "Q" command terminates.

P— Display Previous Page of Memory or File

This sub-command causes the preceding page of memory or input
file to be displayed. If the previous page is outside of the
disassembly range, the next page will be displayed.

(Hex Byte) — Display a Specified Page of Memory or File

If a two-digit hexadecimal value is entered, the corresponding
page of memory will be displayed. For instance, if "4E" is
entered, the page of memory starting at $4E00 will be

displayed. The hex value entered should be within the
disassembly limits. After using a hex-byte address, the "N",
"P M , and "S" sub-commands may be used as desired. If the
requested page is outside the disassembly range, the next page
will be displayed.

Q — Quit and Return to Main Commmand Mode

The "Q" sub-command returns control to the SLEUTH main command

interpreter. If the next page is outside of the disassembly

range, control is also returned to the SLEUTH command
interpreter.

S--Full Screen Edit Mode

^o^ r*r\s**\ or t?TTrpu ii fODVPTHHT 1 Qft ^

The "S" sub-command places the object code dump into a full
screen edit mode of operation. The cursor will be positioned
to the first nybble (digit) of the first byte in the upper
left corner of the hex display. At this point, the cursor may
be moved, using cursor control keys you have defined, to any
point within the hex or ASCII display fields. Note that, the
cursor will always point to valid data and cannot be moved
outside the hex or ASCII display fields. Also, the cursor
will never point to a space between data. When the cursor has
been positioned to the desired location, simply type the
desired new data. If the cursor is in the hex display field,
enter one or both nybbles of the new value, depending on
whether the cursor is pointing to the first or second nybble
of the hex byte. If the cursor is in the ASCII field, enter
an ASCII character. Any or all bytes within the current page
may be changed while in screen edit mode. After making the
last change, hit return. The screen edit mode is exited and
the current page is redisplayed showing the changes just made.
To edit a different page of memory, use the "N" , "P", or
"Hex-byte" sub-commands to select the desired page and then
"S" to enter the screen edit mode again. While in screen edit
mode, none of the object code dump sub-commands may be used.

*Urp 1 QQO

DISK FILES USED BY SLEUTH

During an operating session, SLEUTH may use one to four different
disk files. These include: Input file (binary), Output file
(binary), Output file (text), and a Parameter file (text).

The Input file must be a COCO binary type of file containing
machine language object code for the program to be disassembled or
modified. BASIC programs, Text files, data files, and other
non-binary files will not work. If an attempt is made to use a
non-binary input file, the error message "Bad format! " is usually
displayed.

The Output file produced by the "W" command is another binary

file similar to the input file. Any changes made during the operating
session will be included in this file. If a transfer address has been
set, it will be recorded in the file.

The Output file produced by the M D" command is a Text file

containing the source code produced by SLEUTH. This file may be

immediately assembled by an appropriate assembler and should produce

no errors. The file may be edited and/or modified as the user
desires.

The Parameter file used by the n G" command is a text file
containing the various operating parameters in effect at the time the
file was produced. The data is stored in the file exactly as it would
have been entered from the keyboard.

The disk error messages produced by SLEUTH, CHGNAM, and XREF are
of the following form:

error XX
where XX is one of the two-character codes documented in the Radio
Shack Color Computer Disk System Owners Manual and Programming Guide.
In particular, the most common ones are the following:

AE File Already Exists

DF Disk is Full

DN Drive Number Error

FS Bad File Structure (may be bad directory or FAT)

IE Input Past EOF (may be bad directory or FAT)

10 Input/Output Error

NE File Not Found

SN Bad File Name

WP Write Protected Diskette

^^ r^r\r*r\ ot rnmu 1 e; COPYRIGHT 1983

NAME CHANGER (CHGNAM)

The Name Changer is essentially a word substitution program. A
table of words and the desired substitutes is read into memory and
then the input file is read. All words in the input file are checked
against the substitution table and, if a match is found, the
appropriate substitution is made. The principal use of this is in
changing the machine-^generated labels produced by SLEUTH to standard
labels that are more meaningful. Since SLEUTH always produces the
same label name for the same address, a standard file of labels may be
maintained and used whenever desired.

GETTING STARTED

To start the program, simply insert the disk containing the
program CHGNAM/BIN into the system drive and enter LOADM "CHGNAM" and
EXEC. You will be prompted for the following file names:

the control file (substitution table),
the input file (file to be processed),
the output file (new file with changes made) .

After the file names are entered, operation is entirely automatic with
no operator intervention required.

DISK FILES USED BY NAME CHANGER

Name Changer uses three disk files.

The first file is the Control file. This is a text file
containing a table of text substitutions in the following format:

<delimiter> STRING <delimiter> NEWSTRING <delimiter><return>
where <delimiter> may be any special character which does not appear
in either the STRING or the NEWSTRING string and must be the same in
all three locations; STRING may not be null, but NEWSTRING may be
null; the total length is limited to 32 characters. Following are
examples :

/ZD66C/DSKCON/

.THIS STRING WILL BE DELETED..
Since this file is placed into memory, the diskette containing it may
be removed after it it read.

The second file is the Input File. This will usually be an
assembly source file produced by SLEUTH; however any text file may be
processed, including data files.

The third file is the Output file. This is the text file that
will receive the modified text from the input file.

OPERATING HINTS

If the message "MEMORY OVERFLOW" appears, too many entries are
present in the control file. Break it into smaller sub-files- This
limitation should only be encountered when processing large control
files and is due to the restriction of memory to 32K bytes. If -your
system has more than 32K bytes of memory, you may modify the table
start and end locations, as described below, to process larger control
files. The only limitation on the size of input and output text files
which may be processed is imposed by the size of one disk drive each.
Even in this case, large text files may be processed as smaller
sub-files .

Frequently, in assembly language programming, reference is made
to individual bytes of a multi-byte sequence of code or data. To do
this, the first byte of the sequence is normally assigned a label and
succesive bytes are addressed as that label plus an offset (e.g.
LABEL+1) . SLEUTH and most other disassemblers have no way of
recognizing this convention and will assign a separate label to each
byte so referenced.

When using the Name Changer, it may be desirable, for increased

clarity, to restore the original labeling convention. This is done by
substituting the desired label for the first byte of the sequence and
then substituting the same label plus the appropriate offset for the
labels that the disassembler assigned to the other bytes. A problem
arises here, however, which must be dealt with prior to reassembling
the program.

Most assemblers will not permit the form "LABEL+1" in the label
field of the source program. Consequently, after making the changes
described above, it may be necessary to use a text editor to delete
the equates with the offset labels. Do not delete the equate that
defines the original label. The offset labels are permitted in the
operand field since most assemblers allow and evaluate expressions in
that field.

rnovpTttHT 1 9fi3

CROSS-REFERENCE GENERATOR (XREF)

XREF processes an assembly language source file and produces a
sorted list of labels found in that file, the line number where the
label is defined, and the line numbers of all lines in the program
that refer to that label. Any source file which follows the Motorola
source code format may be processed with this program. Labels are
restricted to 8 characters .

GETTING STARTED

To start the program, simply insert the disk containing the
program XREF/BIN into the system drive and enter LOADM "XREF" and
EXEC. You will be prompted for the names of the input and output
files. Entering no output file name will send the output to the
screen. An output disk file contains the cross reference listing,
which may be saved for later reference and/or printed with a trivial
BASIC program (not included in the package).

Program operation, with minor exceptions, is entirely automatic
after the file names have been requested.

OPERATING HINTS

If the message "MEMORY OVERFLOW" appears, too many entries are
present in the input file. Break it into smaller sub- files and XREF
each separately. This limitation should only be encountered when
processing very large files and is due to the restriction of memory to
32K bytes. If your system has more than 32K bytes of memory, you may
modify the table start and end locations, as described below, to
process larger files. The other limitation on the size of input and
output text files which may be processed is imposed by the size of one
diskette each. However, the input diskette may be removed when the
output file name is requested.

rnovPTr,HT IQft*^

ADAPTING SLEUTH, CHGNAM, AND XREF TO YOUR SYSTEM

The first few bytes of the object files of SLEUTH, CHGNAM, and
XREF contain information which may be required to adapt them to your
system. The object file editing capabilities of SLEUTH may be used to
perform the modifications, as required. Following are the addresses
and contents of this information:

address
offset

contents

0002
0003-4

0005

0006-9

000A-B
000C-D

program version number

serial port (printer) Baud rate

01CA = 110 Baud

00BE = 300 Baud

0057 = 600 Baud (default)

0029 = 1200 Baud

0012 = 2400 Baud
bits per byte on serial port

07 = 7 bits/byte

08 « 8 bits/byte (default)
disk step rate (drives 0-3)

00 =s 06 millisec.

01 = 12 millisec.

02 = 20 millisec.

03 = 30 millisec. (default)

table start address (default 0000)

table end address (default 1F00 for SLEUTH)

When modifying this information, be careful not to modify any
other of the contents of SLEUTH, CHGNAM, or XREF. Also, be sure to
keep the original versions of the programs on the original disk in
case you make an error in modifying them or need them to run on slower
disk drives in the future.

SLEUTH does not actually modify memory with the "Q M , "M", and "T M
commands; rather, it records the changes in a table and applies them
when the object program is written with the "W" command or
disassembled with the "V M or "T" command. Thus, before the change
will be effective, the program must be re-executed from the new object
file.

The source files processed by COCO SLEUTH contain a carriage
return following each line of text. This is also the format required
by most of the current COCO assemblers and editors. If your assembler
or editor requires a different format, it should be very simple to
write a BASIC program to reformat the file produced by SLEUTH to be
compatible with your assembler or editor, or vice versa.

If your printer will not work properly with SLEUTH, contact CSC.
There is tremendous variation among the printers which may be attached
to the COCO. A standard printer driver is provided, but it may be
possible to easily modify it to drive your printer. Luckily, a
printer is not essential to the use of SLEUTH.

^r*f¥i*¥

P^DVDT^UT 100*5

COCO SLEUTH COMMAND SUMMARY

OPERATIONAL COMMANDS

D — Perform full disassembly

F — Exit COCO SLEUTH

Q — Edit object code dump

M — Query/modify object code

T — Fill address range with hex value

U — List directory of a mounted diskette

V — View object code & perform absolute disassembly

W--Write new object code file

Y — Find hex string in object code

ADDRESS RANGE COMMANDS

A — Classify as FDB

C — Classify as FCC

H — Classify as FCB

I — Classify as Instruction

J — Classify as Instruction + ASCII

K — Classify as Killed or Ignored

R — Classify as RMB

MODE CHANGE COMMANDS

B — Flip cross-assembler switch

E — Flip separate-label switch

P — Flip position- independence switch

Z — Select CPU mode

MISCELLANEOUS COMMANDS

G — Specify auxiliary input/output file

L — List control information

N — Set new disassembly range

O — Set offset load value

S — Specify input file name

X — Set transfer address

